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On vortex/wave interactions. Part 1. 
Non-symmetrical input and cross-flow in 
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The paper studies certain effects of non-symmetry on vortex/wave interactions, for 
inviscid inflexional waves interacting nonlinearly with the vortex component of the 
mean flow in boundary-layer transition at large Reynolds number. Two types of non- 
symmetry are investigated, namely for unequal input wave amplitudes and for small 
cross-flows. These lead to coupled integro-differential equations for spatial de- 
velopment of the wave amplitudes, which are examined in an essentially equivalent 
differential form for various degrees of the non-symmetry present. Each type of non- 
symmetry can have a significant influence on the nonlinear interaction properties. 
Special emphasis is given to bounded solutions, and numerous interesting new flow 
responses are found analytically and computationally. The theory provides a basis for 
tackling enhanced non-symmetry in the input or stronger cross-flows. 

1. Introduction 
Vortex/wave interactions in boundary layers, channel flows and related motions 

have attracted considerable attention recently with regard to transitions from laminar 
flow. These nonlinear interactions arise in various forms, principally with viscous- 
inviscid Tollmien-Schlichting waves or with inviscid inflexional Rayleigh waves as 
in Hall & Smith (1988, 1989, 1990, 1991), Walton & Smith (1992), Blennerhassett & 
Smith (1992), Stewart & Smith (1992), Smith & Bowles (1992), Walton, Bowles & 
Smith (1994), Benney & Chow (1989), Goldstein & Choi (1989), Brown et al. (1993), 
Smith, Brown & Brown (1993, referred to herein as SBB), Wu (1993a), Wu, Lee & 
Cowley (1993) and Khokhlov (1994) in different flow regimes. They all have the 
common feature, however, that at high Reynolds numbers small-amplitude three- 
dimensional waves are coupled nonlinearly with the mean flow via its unknown 
longitudinal vortex component. The remarkable smallness of the waves involved, 
especially in SBB, is in fact one reason on both practical and theoretical grounds for 
the attention devoted above to vortex/wave interactions, in comparison with the 
somewhat higher amplitudes connected with nonlinear triple-deck interactions and the 
still higher amplitudes in Euler-scale interactions. More detailed comparisons are made 
by Hall & Smith (1991), Walton & Smith (1992), SBB and Timoshin & Smith (1995). 
A second reason for the theoretical focus on vortex/wave interactions surrounds the 
qualitative and quantitative links with experiments on transition described by Hall & 
Smith (1991), Walton & Smith (1992), Stewart & Smith (1992), Smith & Bowles (1992), 
for a variety of input conditions. Observations of the significant role of longitudinal 
vortices in the early stages of some transition paths are given experimentally by Aihara, 
Tomita & Ito (1984), Tani & Sakagami (1962), Klebanoff & Tidstrom (1959), 
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Nishioka, Asai & Iida (1979) and computationally by Wray & Hussaini (1984), Spalart 
& Yang (1987), Kleiser & Zang (1991), Sandham & Kleiser (1992), Rempfer & Fasel 
(1994) (and many references therein) for example. Third, and perhaps from a narrower 
perspective, vortex/wave interactions yield a wide range of interesting new analytical/ 
computational problems in transitional fluid dynamics. 

The concern of this paper is with the effect of non-symmetry on vortex/wave 
interactions in the presence of inflexional disturbances, as opposed to the symmetric 
configurations studied by SBB and in the papers referenced in the preceding paragraph. 
The non-symmetry discussed in the present paper, Part 1, is due either to non- 
symmetrical input waves, or to cross-flow in the incident boundary layer. (Part 2, 
Brown & Smith 1996, is concerned with the effect of swirl in a jet flow) or both. The 
effects produced can be substantial in certain parameter regimes. Even quite small 
cross-flow or swirl for instance is found to have an important influence on the 
interactions, which is a significant practical point since in reality most incident 
boundary layers are likely to be three-dimensional to a greater or lesser extent, 
especially on swept wings, near wing-body junctions or in atmospheric boundary 
layers (see, for example, Reed & Saric 1989; Kohama, Saric & Noos 1991); similar 
considerations apply to swirling jets and similar flows with their possibility of inducing 
vortex breakdown. Along with that there is also the need to discover more about the 
impact of small non-symmetrical disturbances and cross-flow or swirl as well as input 
frequencies, wavenumbers and disturbance amplitudes, in devices intended to promote 
or delay transition efficiently. 

The theoretical approach used is based on that developed in SBB. A predominantly 
two-dimensional inflexional boundary layer flowing in the streamwise direction x, but 
with a small amount of cross-flow in the spanwise direction z ,  approaches the neutral 
station x = 0 at which small inviscid three-dimensional Rayleigh waves are initiated 
and interact nonlinearly with the induced three-dimensional mean flow. The waves are 
of relatively short length and time scales whereas the induced vortex is relatively long 
and quasi-steady. The small cross-flow and the input non-symmetry are such as to 
affect the local nonlinear interaction substantially. In due course a study of much 
stronger cross-flows would be desirable, bringing in full cross-flow modes nonlinearly, 
cf. Stuart (1963), Hall (1986), Stewart & Smith (1987), Bassom & Gajjar (1988), Gajjar 
(1995) and the strong cross-flows accommodated in Davis & Smith (1994) for 
longitudinal vortex interaction with viscous-inviscid waves, but the above approach 
seems to provide a helpful starting point. The local cross-flow structure then is multi- 
zoned in the direction normal to the solid surface or wall y = 0, as in SBB, with a thin 
critical layer and two slightly less thin buffer layers lying in the middle of the boundary- 
layer core of the motion. The resulting nonlinear vortex/wave interaction involves 
interplay between properties in all the above zones. 

The structure of the flow is described in $2 below, being as in SBB but with allowance 
made for non-symmetric wave input and for the small cross-flow. This yields in $3 a 
pair of integro-differential complex amplitude equations for the unequal waves present, 
with or without cross-flow. The equations can be transformed however into two 
nonlinear second-order ordinary differential equations, as in $4, limiting forms of 
which are presented in $ 5 ,  guided by the analysis in SBB. Although most of the 
ultimate solution responses in SBB can still be produced even with non-symmetry 
active, there is particular interest in the parameter range associated with bounded 
solutions. Solutions for small cross-flow, governed by a parameter N ,  and near-equal 
amplitudes, are addressed first in $6, leading to a system of recurrence relations which 
are analysed in detail in $7. These in turn suggest other solutions. Thus, in $8, more 
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general periodic forms are derived; in 99 forward-marching results are described for 
moderate values of L, N ,  where the parameter L is the ratio of the real and imaginary 
parts of a coefficient in the amplitude equations. Further comments are provided in 
0 10. 

2. The structure of the flow 
The physical background of the problem is exactly as in SBB. The basic equations 

are the incompressible Navier-Stokes equations in non-dimensional form. With a 
representative length L* and representative speed U*,  we write the starred dimensional 
Cartesian coordinates (x*, y*, z*), velocity components (u*, v*, w*), pressure/density 
ratio p*/p* and time t* as 

(x*,  y*, z*) = L*(x, y ,  z) ,  (u*, v*, w*) = U*(u, v, w) , l  
p*/p* = u*zp,  t* = U*t /L* .  J (2.1) 

The Reynolds number R defined as 

R = U*L*/v*,  (2.2) 
where v* is the kinematic viscosity of the fluid, will be taken as large throughout. 

As in both Brown et al. (1993) and SBB and the earlier paper of Hall & Smith (1991), 
the boundary layer of width O(R-9 develops on a streamwise length scale O(R-b) 
where 6 > max(0, b). The transverse development is on a scale O(R-7 and it is 
convenient to write 

x = R-bX, y = R-$i, z = R-". (2.3) 
A two-dimensional boundary layer, for example a classical boundary layer for which 

b = 0 and S = + in (2.3) or an interactive boundary layer with b = & S = i, is assumed 
to attain the station x = 0 with a velocity profile U,,(p) that has a point of inflexion 
at p = a,. This neutrally stable profile initiates the three-dimensional nonlinear 
development of the flow, a development termed vortex/Rayleigh-wave interaction. 
Downstream of x = 0 a critical layer is present, consisting of a (unknown a priori) 
surface p =Ax, 3 of which the leading edge is the straight line X = 0, p = 8,. Both in 
SBB and the present work we are concerned with the immediate neighbourhood of the 
station x = 0 and we define 

x = e3x1, where e = R-(S-b)/6, (2.4) 
so that x ,  = 0(1) in what follows. The asymptotic structure of the flow is exactly as in 
SBB and is illustrated in figure 1. The core flows have p = 0(1), while in the buffer 
layers and critical layer the appropriate scalings are 

p-AX, 3 = €3/2 r,, F - f l X ,  F) = Y (2.5) 
respectively. There is also a passive viscous layer on the wall of thickness O(s3), the 
effect of which is easily incorporated. 

The final important scalings define fast variables in time and in the streamwise 
direction by 

with the notation E reserved for the exponential 
T = R3'-'-lt, a, X = R6-b a($ dX (2.6) 

(2.7) 
In (2.6) and (2.7), D is a prescribed real frequency and the real wavenumber a($ is to 
be determined as part of the solution. The component of the solution that has a factor 

s 
E = exp [i(a, X-SZT)]. 
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FIGURE 1. Sketch of the short-scale vortex/wave interaction region. The buffer layers B and the 
critical layer C.L. are in the region X = O(2);  regions D and E represent their continuation into 
x = O(1). 

E (or products of its powers and inverses that do not make a zero exponent) is known 
as the wave, while the E-independent component is termed the vortex. In SBB the 
leading-order wave pressure, i.e. that of the input wave, was taken to be of the form 

r(xl)  P&y) E C O ~ , ~ ~ Z + C . C . ,  (2.8) 

where Po($ is an eigensolution of Rayleigh’s equation and /lo is a prescribed constant 
wavenumber in the ,%-direction. The result of the investigation was an integro- 
differential equation (of cubic nonlinearity) for the amplitude r(xl). In the present 
study we replace (2.8) by 

gpO(y) E{r+(xl) eijoz+ r-(xl)  e-iPoz} + C.C. 

If we regard (2.8) as typifying a pair of waves at angles +/3,/a0 to the mainstream 
direction with equal amplitude r(xl), then correspondingly the pair of waves in (2.9) 
have the possibility of unequal amplitudes r+(xl) and r-(xl) .  

In the following section we describe the amendments that must be made to the 
integro-differential equation of SBB, firstly due to the input wave (2.9) and secondly 
due to a small z-independent transverse cross-flow component to the oncoming 
boundary layer. 

3. The integro-differential equation for unequal-amplitude input waves 
For clarity of exposition and ease of verification we describe the adjustments that 

must be made to the integro-differential equation of SBB in two parts. First, we adopt 
the input wave (2.9) to replace (2.8), and subsequently incorporate a small, specifically 



On vortexlwave interactions. Part 1 105 

O(e3), contribution in the z-direction to the oncoming two-dimensional boundary 
layer. The reason for the choice of order of magnitude of this contribution is that it 
affects the core flow at the same level in the series expansion as does the non-parallelism 
of the basic flow. The corresponding effect on the buffer and critical layer is discussed 
after (3.13). 

The equation obtained and analysed in SBB is 

where the constants which comprise the coefficients are as follows: 

C, = U,(a,), b, = Uh(a,), b, = U;(Z,), y: = a:+P:. (3 4 
Also, G i  - G;, G i  - G; are integrals of the basic flow, and Q; is the contribution from 
the wall layer. The definitions are 

and Q; = - ?: P,(O) (- ia, cO)-'I2. (3.4) 

a(x)  = a, + e3a2 X ,  + 0(e3) (3 * 5) 
and x ,  U, is the O(e3) correction to the mainstream in the core region. 

In (3.1) the linear terms would arise if there were no vortex-wave interaction. The 
nonlinear term results from the discontinuity across the critical layer in the transverse 
shear stress in the buffer region, and its coefficient ( A  say) is obtained by solving the 
equations that are valid in the neighbourhood of the critical layer. In SBB it was 
necessary to select the coefficient of cos Po z in 

In (3.3a), a2 is the coefficient of x ,  in the expansion of a(x)  in (2.6) as 

where 

and 

T,(x , ,g  = r1 J,(s,ads 
J -00 

(3.7) 

Here p"o(x1,23 = cos P o  z (3-9) 
and J,(s, 
mentioned above. 

we must now select the coefficients of e+igor in (3.6) with 

is the jump across the critical layer in the transverse shear stress that was 

In the new study, in which (2.9) replaces (2 .Q to obtain the two equations for r+(x l )  - 

(3.10) p",(xl, 3 = gr+(xl )  eiPoz+ r-(xl)  e-iPoz). 
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The linear terms in equation (3.1) have r(xl) replaced by r+(xl) respectively while the 
nonlinear terms become, again respectively for the ekipoz contributions, 

(3.11) 

where the asterisk denotes a complex conjugate. 
We now assume that the body is yawed to the oncoming boundary layer so that there 

is a ,%direction component, e3W0(7), for the mainstream velocity. The effect of this 
modification on the flow in the core is to replace a. x, U, by a, x, U, k Po W, for the two 
equations respectively, so that the right-hand side of (3.1) is augmented by a term 

where (cf. (3.3)) 
(3.12) 

(3.13) 

In the buffer regions and the critical layer, the only property of Wo that is relevant is 
its value at the critical layer, W(a0) = go say. In both regions the operator c0a,. is 
replaced by c, 3%’ +go az which is equivalent to co dZl f iPo go when applied to the terms 
displayed in (3.10). The first term in (3.1) is a phase-jump contribution to the buffer 
layer and we must replace co r’,(x,) here by co r’,(xl) f @,go r+(xl). The integral in the 
nonlinear term results from the inversion of a Fourier transform with respect to x1 
obtained as a solution of the buffer-layer equation for the leading contribution to the 
vortex, namely 

(c, a,., +go a 3  wo = WOY,Y,* (3.14a) 

Equation (3.14a) is to be solved, as in SBB where go = 0, with wo + 0 as x, + - co and 
as q, the buffer-layer normal coordinate, tends to infinity. Also the jump (3.8) forced 
by the critical layer leads to a discontinuity Jo(xl,$ in waul across = 0. Since it 
follows from (3.8) that wo is a linear combination of terms in exp ( f 2iP0 3, (3.14a) may 
easily be solved and (3.11) is now replaced by 

(3.14 b) 

as the nonlinear contribution. 
Equation (3.14a) may be recognized as equation (3.7) of Part 2 with ro 0 identified 

with rand 6, withg,. Indeed the analysis of the buffer and critical layers, presented here 
as a straightforward extension of SBB, may be deduced from the more intricate 
calculation of Part 2 in the limit ro+co with n / r ,  fixed. 

Finally we make the transformations 

(3.15) 

so that the appropriate analogues of (3.1) are 

Ct’,(x,)+At,(x,) t+(s) t*,(s)ds+(Bxl+F+)t+(xl) - -  = 0, (3.16) 

which may be compared with (6.1) of SBB. The constants A ,  B, C have the same values 
as in SBB where A was real and C complex. In SBB the value of B was taken to be real 
as there the discussion was restricted to profiles such that the solution in the region 

1: 
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under consideration had the possibility of a match with the initiation of the Hall-Smith 
vortex/wave interaction as analysed in BBST. If this restriction is removed and a more 
general class of downstream development is examined, as it will be here and also was 
in SBB, then the requirement of a downstream limit with a regular critical layer for a 
match with the Hall-Smith solution is no longer necessary. The result is that Bin (3.16) 
can be complex. A complex B makes no difference to the analysis of the solutions of 
the amplitude equation that were carried out in SBB. Also in (3.16) 

(3.17) 

Here D, G are real (D by a change of origin of x,). In addition A ,  B, C, D are functions 
of /3: as are Gi ,  G', and hence it is only the real parts of F+ - that differ in the constants 
in the two equations (3.16). 

Integro-differential equations resembling (3.16) arise in discussions of the nonlinear 
evolution of instability modes in laminar boundary layers and shear flows in many of 
the references cited early in the introduction. The motivation behind the derivation of 
the corresponding equation of SBB, to which (3.16) reduces in the equal-amplitude 
case t, = t- with F+ = E,  was to analyse the development of the amplitude t+(x,) on 
a streamwise length scale that permitted a match downstream with the small-x solution 
of the Hall-Smith vortex/wave-interaction equations which hold when x of (2.3) is 
O( 1). In the Hall-Smith structure it is anticipated that the coupled reaction between the 
oblique Rayleigh waves and the developing mean-flow results in an evolving regular 
viscous critical layer of equilibrium type, and that the self-sustaining interaction will 
persist to large distances downstream. In SBB, of which the present study is a 
generalization to unequal amplitudes of the input waves and to cross-flow, the shorter 
lengthscale x = O(e3), i.e. x1 = O( l), is considered, and critical-layer interaction, again 
of a viscous equilibrium type, between two oblique waves of amplitude O(e7) forces a 
spanwise-dependent (vortex) contribution of smaller order O(e8). In addition to the 
Hall-Smith limit the equation of SBB generates three other possible solution paths of 
interest in their own right. 

By contrast the integro-differential equation of Wu et al. (1993) involves multiple 
integrations, a more complicated kernel, but no non-parallel term. These authors study 
oblique input waves of equal amplitude in an analogous problem of an unsteady shear 
layer but work on a shorter length scale (there a time scale) equivalent to x = O(e4) 
here. In their situation the critical layer is of non-equilibrium type, since the streamwise 
gradients are larger, the buffer layer is absorbed into the critical layer, and the 
spanwise-dependent mean flow is induced at the same order, O(e6), as the input wave. 
The inviscid limit of these authors' amplitude equation reduces to that of Goldstein & 
Choi (1989), and in a discussion of the relation between their approach and the 
Hall-Smith vortex/wave interaction theory, they demonstrate that in a certain viscous 
limit it can be reconciled with that of SBB without the non-parallel term. Further 
explanation of the various length (time) scales involved is given by Wu & Cowley 
(1995). The same shorter x-scale and non-equilibrium critical layer is involved in the 
resonant-triad studies of, for example, Wu (1995). 

Most studies to date have been confined to symmetrical situations, i.e. the oblique 
waves make equal angles with the direction of the undisturbed mainstream and are of 
equal amplitude. An example without these restrictions is that of Wu (19933) which, 
although an examination of the development of a triad of Tollmien-Schlichting waves 
rather than Rayleigh waves as considered here, leads to a pair of equations of the form 
(3.16) together with one for the two-dimensional wave. His equations effectively have 
C purely imaginary, and his numerical solutions show that interaction with the two- 

F+ - = - iD T 3: Po{ G: - G; + g,,(G; - G;)} = - iD f G say. 



108 S .  N .  Brown and I;. T .  Smith 

dimensional wave can result in two oblique waves of unequal input amplitude evolving 
to an equal-amplitude state. Equations (3.16) have complex constants and a non- 
parallel term and hence a very rich solution space. For any non-zero cross-flow, i.e. 
non-zero G in (3.17), equal amplitudes will not be a possibility here. 

The following sections are devoted to a study of equations (3.16) with emphasis on 
parameter values that will result in solutions that are expected to persist at large 
distances downstream, and on the effects of the cross-flow. 

4. The governing ordinary differential equations 
In this section we rewrite equations (3.16) as differential equations for the modulus 

and phase oft, by eliminating the integrals and separating the resultant equations into 
their real and imaginary parts. We define successively 

and for the constants appearing in (3.16) we let C = h + ip, B = a + i7 and define L, M ,  
N by 

L2 = h2/p2 ,  M = (ha+p7) / (h2  +p2) ,  N = Gh/(h2 +p2) .  (4.3) 

The equations for the phases 8, - are then 

4ApR+ e+ = h2T'-p2S'+2(Dp+ Gh) S+2x1(hnT-p7S),  

4hpR- 6" = - h 2 T ' - ~ 2 S ' + 2 ( D p - G h )  S - 2 x 1 ( h ~ T + p ~ S ) .  

The change of origin 
(hV +p7) X ,  - Dp = (ha +p7) X (4.5) 

enables the constant D to be eliminated from the modulus equations. With a final 
transformation 

these equations are 
S(X)  = ~ , ( x ) e - ~ ~ ' ,  ~(x) = ~ , ( x ) e - ~ ~ *  (4.6) 

- - ~ h e - ~ ~ ~ ( s f -  T ; ) ~ / ( A ~  +p2), ( 4 . 7 ~ )  

( S  ; - T ;) Sy = S,( S;Z + L2 Ti2) + 4NS,{L2S, T i  + q S ;  + N( 1 + L2) Sf} 

(Sf- Tf) T i  = - T,(Ti2 +L-'S?)+ 2N{(1 -LP2) Tf Si 

- ( 1  +C2) Sf Si -2S1 q T ;  -2N(1+ L-') Sf T }  (4.7b) 

with the parameters L, M ,  N,  Ah/(h2 + p 2 )  remaining. 
In SBB, all the solutions of equations (4.7) were found in the special case of N = 0 

with also = 0. This is the completely symmetric situation with zero cross-flow, and 
two waves of equal amplitude equally inclined to the mainstream direction. With N = 
T = 0 the behaviour of the solutions depended only on the signs of M and Ah. With 
M > 0 and Ah < 0 there were four possibilities. The first, in which the solution 
terminates at a saddle point in the phase plane as x +co with a non-zero constant limit 
for S (not for S,), is that which matches with the initiation solution of the Hall-Smith 
(1991) wave/vortex equations as discussed in Brown et al. (1993). This solution is 
unique. The other solutions for S either decay both as x + k c o ,  exist between two 
algebraic singularities, or decay at one end and terminate at a finite value of x at the 
other. With A4 > 0, but Ah > 0, only the decaying solutions are possible. If M < 0 and 
Ah < 0 all solutions for Shave two terminating algebraic singularities but if Ah > 0 all 
solutions for Shave the interesting property of being periodic. These periodic solutions 
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were the subject of extensive discussion in SBB as it was believed that the resulting self- 
sustaining waves on a flow which is nevertheless changing structure would be 
applicable to the early phases of laminar-turbulent transition. 

Equations (4.7) may be regarded as replacing equations (3.16). In addition, however, 
because of the differentiation of (3.16) involved above, there are constraints on the 
appropriate starting conditions for (4.7); these correspond to requiring Ct; = 
- (Bx,  + F+) t ,  at the start of the interaction where nonlinear effects are negligible. 
It may be shown that this reduces to 

as a starting requirement. Further reference to (4.8) is made in the following section. 
In the following section we submit the governing equations (4.7) to a further 

simplification with a view to computing and analysing solutions of a periodic or self- 
perpetuating form. 

Si+2NT,  = 0, T ; + 2 N S l  = 0 (4.8) 

5. A limiting form of the governing equations 
The solutions of equations (4.7) discussed in SBB that persisted on a large stream- 

wise scale were (with N = T = 0) the periodic solutions for S.  These, at large values of 
the typical amplitude, exhibited long regions of predominantly vortex flow interrupted 
by rapid vortex/wave interactions which continually moderated the vortex flow. The 
first of these is a non-parallel phenomenon while the second is a short-scale quasi- 
parallel readjustment. For this interpretation of the solution it was necessary first to 
consider x p 1, and then to have M < 0 and Ah > 0 so that the periodicity conditions 
were satisfied. We now discuss equations (4.7) under similar conditions. We assume 
that x remains within an O(1) (or less) distance of X ,  where X ,  >> 1 ,  change the 
origin to X,, and replace the factor cMX2 multiplying the quartic terms in (4.7) by 
e-MX: . Because of the scaling properties of (4.7) it is then sufficient to replace 
Ah e-MXi/(h2 +p2) by f 1 and, by analogy with SBB since this produced the solutions 
of greatest interest, we choose the positive sign. Although this argument can be carried 
through regardless of the sign of M ,  the resulting solutions are expected to be of most 
significance when M < 0 because if M > 0 it is likely, (see (4.6)), that S,  T will be 
exponentially small. Negative M was required for the periodic solutions of SBB. 

With Ah e-Mz2/(h2 +p2) replaced by unity, as explained above, (4.7) can, by addition 
and subtraction, be put in the form 

M W  - ABA“ = @2(A”’ - 2 ) 2 + (A”’ + 2 ) 2 ]  [( 1 - L-2) A”+ (1 + L-2) B”] - A”zB”2 

+;N{(A”’-B)(L2(A”+B”)2-A”2+B”2) 

+ (A”’ + 2) ( 2  - B2 - 22B”- L-2(2  + @))} 

+;N2(A”+ip{(I +L2)(A”+B”)-(1 +L-2)(2-B”)}, (5.1 a) 

-- - 
A B B  = Q[L2(A”’-B”’)2+(A”I+B”’)2][(1+L-2)A”+(1-L-2)B”]-J2B”2 

+;N{(A”I--) (L2(A”+B”)2+A”2-B”2) 

+;N2(A”+B”)j2{(1 +L2)(A”+B”)+(1 +L-2)(A”-ii)}, (5.1 b) 
+ (A”’ + 2) (A”” - 9 + 2 2 8  + L-2(22 + P))} 

containing the two parameters L, N,  where 

A”= s,.tT,, B ” =  s,-T,. (5.2) 
It must be remembered throughout that both A” and B” are non-negative since they 

are defined as positive multiples of pt and p l  in (4.2). Also, although the system (5.  l), 
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(5.2) is associated with extreme conditions such as large typical amplitudes, input far 
upstream, large-amplitude input, and/or extreme values of A ,  M in (4.7), these 
conditions are in fact very interesting physically, particularly the applications to 
increased amplitudes. This point is made in SBB. As there, and as indicated in the 
previous paragraph, we would expect a non-parallel-flow effect to re-enter, from (4.7), 
even further downstream probably on the longer O(X,,) scale in x. Finally, the starting 
requirements (4.8) are not expected to impose any great restrictions on the current 
solution. Some of the solutions of (5.1) that we shall obtain satisfy them automatically 
in the region under consideration (see for example figure 3 (a,  c) for which N = 0 and 
Sl, and Ti  repeatedly have common zeros). Those solutions that do not satisfy (4.8) in 
the present region of interest are assumed to correspond to wave profiles that have 
evolved in an upstream region where the requirements were satisfied. 

Although equations (5.1) appear complicated it is possible to gain from them some 
feeling, by inspection, of the effect of the cross-flow parameter N .  With N = 0, there 
is, for all L, a non-trivial solution with A" = B and non-constant. This is the solution 
of SBB with = 0. When cross-flow is present Land B" are not interchangeable unless 
the sign of N ,  or alternatively that of x, is also changed. If we recall that x, B" represent 
amplitudes of imposed waves that are equally inclined to the x-axis, whereas the 
presence of the cross-flow implies a bias towards the direction of one or other of 
these waves, then the skew-symmetry is not unexpected. We note here, and it will 
be of interest in $9 below, the existence of the simple symmetric solution A" = B" = 
4( 1 + L2) N 2 .  

In the following section we demonstrate analytically the existence of periodic 
solutions of (5.1) by asymptotic methods in which the asymptotically small parameter 
chose, B say, is a measure of the distance between the functions A" and B". It will, in 
addition, for the consistency of the analysis, be necessary to assume that N = O(3. The 
resulting period is asymptotically large. 

6. Solutions for small cross-flow with amplitudes A" and 
equal 

(5.1) have the solution 

approximately 

When A"and Bare taken to be equal and the cross-flow N set equal to zero, equations 

% -  a'lZ 
A = B = asech2--((x-b), 

d2 
where a, b are arbitrary constants. This solution can, by suitable interpretation of the 
constants a, b, be recognized as that obtained in $7 of SBB when the periodic solutions 
of large amplitude were examined for x + 1. It corresponds to a region of rapid 
vortex/wave interaction and is followed in that study by a long region of non-parallel 
predominantly vortex flow with negligible wave action. The cycle is then repeated 
because in the situation considered there (which has 3 = N = 0 in (4.7)) all solutions 
of (5.1) with Ah > 0 are periodic functions of x. Our aim in this section is to show that 
the symmetric solution (6.1) can be used to construct non-symmetric solutions of (5.1) 
that are periodic functions of x. We shall find that there are also solutions of (5.1) that 
are not periodic functions. 

The structure of the solutions of (5.1) that have A" z B is as follows. There are humps 
in which the sech2 solution of (6.1) is appropriate separated by troughs in which A" and 
B" both oscillate. The solution in each hump must be matched to those in the adjoining 
troughs. Equations (5.1) have the property that if G"(x) is a solution so is aG"(alizx) for 
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any constant a, so for simplicity we shall take a = 1 in (6.1) so that the maximum height 
in a hump is unity. It emerges that the matching requires the same value of a for each 
hump. 

(a) The solutions in the humps 
We let the successive humps have their maxima at x = 0, s,, s,, ..., with, for the nth 

(6.2a) 
hump 

&,) - B(s,) = 7, F, (6.2b) 
where F acts as a book-keeping parameter measuring the distance between Land B. We 
assume 0 < F 4 1. At present y n  and 6, are at our disposal. 

&,) + B ( S , )  = 2, A”’(s,) + B’(s,) = 0, 
&s,) - B’(s,) = 6, F, 

The solution in the nth hump is thus 

(6.3) 
1 

A”(x) + j(x) = 2 sech2 __ (x - s,) 
d 2  

from (6.1) with a = 1, and from (5.1) on linearization 

where X(x) - B(x) = FC(x), 

- 2 1 - 1 1 
C”(x)+-tanh2--(x-ss,) C(x) = fisech2--(x-s,) tanh-(x-s,) 

L d 2  d 2  d 2  (6.5) 

N = 2-5/2 aV/(i + r2). 

C(s,) = Yn, Cys,) = 6, (6.7) 

(6.6) 
if we set 

The boundary conditions on (6.5) are that 

to satisfy (6.2b). The solution of (6.5) may be written down by variation of parameters 
in terms of the solutions of the homogeneous equation. We denote these by $o(x), $,(x) 
where $o(s,) = 1, $;(s,) = 0, and $,(s,) = 0, $;(s,) = 1. To match with the solutions 
in the troughs we shall require the asymptotic forms of $o(x),  $,(x) when Ix-s,I 9 1, 
which are 

where yo, y,, q, r are constants depending on the value of L and are easily found 
numerically. It is not difficult to ascertain their asymptotic forms when L 9 1 and 
L < 1 and this is undertaken in the Appendix. 

The solution of (6.5) that satisfies (6.7) is 

z‘<x> = -$,(XI Ln H$, dx, + $,(XI [ H$o dx, + 7% $,(4 + 6, $,(XI, (6.9) 

where we have written H for the right-hand side of (6.5). It follows from (6.8) that for 
Sn 

x-s, + 1, 

(,’, y,) (6.10) 
- 

rsinz 3- C(x) z (7, -Il) q 

but for x-s, 4 - 1, 

- 
C(x) w -(6,+Io)rsinz( L - z - y l ) .  (6.11) 

Here 

(6.12) 
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and the facts that r$o is an even function of x -s, whereas r$l, Hare odd, have been used. 
The expressions (6. lo), (6.11) will be required for the match to the solutions in the 
troughs on each side of the hump centred on x = s,. 

(b) The solution in the troughs 
To leading order the solution in the troughs is obtained by ignoring the cross-flow 
terms proportional to N in (5.1) and the nonlinear terms A”zB“z on the grounds that they 
are smaller by a factor E“. The general solution of the resulting equations is, in the nth 

(6.13) 
trough, - -  

A + B = p, cash (A,(x - t,)), 

(6.14) 

with four arbitrary constants An, p,, t,, h,. We now match the solutions (6.13), (6.14) 
to those in the hump, with suffix n say, behind this nth trough, and to those in the hump 
in front of it with suffix (n+ 1). 

Matching A”+B” of (6.13) as x - & + - a  with the solution (6.3) as x-s,+co first 
shows that A, = 2/2 and then gives a relation between p,, the minimum value of A”+ B” 
in the nth trough, and the difference between the x-coordinates of this minimum and 
the top of the previous hump. A similar relation is obtained by matching with (6.3), 
with n + 1 replacing n, as x- t,+co and X-S,+~ -+ - co, s,+~ now being the position of 
the top of the succeeding hump. The two relations are 

pu,/16 = exp[-2/2(t,-s,)l = ex~[-2/2(sn+,-tt,)l- (6.15) 
From (6.15) we first deduce that the trough is symmetrically between the two humps, 
and that the distance between the lowest point of the trough and the highest point of 
the hump is large, since (6.13) was derived on the assumption that p, = O(9. 

Further relations are found by the match of A”- B”. As the nth hume is exited on the 
right, i.e. as x-ss,+0o, it follows that the asymptotic form of (A”-B)/E is exactly as 
given by the expression for c(x) in (6.10). However, as the (n + 1)th hump is exited on 
the left, i.e. as x - s, --f - 00, the asymptotic form of (2- &)/B  is given by the expression 
in (6.1 1) with (n+ 1) for n. Both these asymptotic forms must match with A”-B” in 
(6.14). The match of the amplitudes leads to 

(7% - 11)2q2 + (6, + 1olZr2 + 2(Y, - 11) (6, + 10) qr cos 
8 

(6.16) 

Because of the simple sinusoidal form of A”-B” in the trough (see (6.14)) the phases of 
the asymptotic forms as the humps are exited must also be identical. The result of the 

(6.17) 

where r:, r;+, are defined by 

and m is any integer as long as it is large. 
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The interpretation of (6.15t(6.18) is as follows. If the conditions (6.2) are given at 
the hump x = s,, i.e. Eyn, E6, are given, then the position of the next hump, x = s,+~ 
and the corresponding values Y,+~,  6,+, may be obtained in terms of them. First, note 
that, since p, is known in terms of yn,, 6, from (6.16), (6.15) leads to 

s,+1 -s, = d 2  log (16/p,). (6.19) 

If we then write (6.17) as an equation for Ti,,, in terms of Ti which is known from 
(6.18a), and successively calculate sin Ti+,, cos Ti,,, equation (6.18b) may be solved 
as a pair of linear equations for Y,+~, S,,,. The procedure may be repeated from hump 
to hump. In the following section we examine solutions of this system of recurrence 
relations, showing that it has both periodic and non-periodic solutions. Subsequently 
we use the periodic solutions to construct periodic solutions of the system (5.1) of 
differential equations. 

To complete the solution in the trough we require the constant h, in (6.14). Since the 
sinusoidal form of A"- B" persists from the nth to the (n + 1)th hump right throush the 
nth trough it is only necessary to match the phase of A"-B" to that given by C(x) in 
(6.10) as X-S,+OO on leaving the nth hump. The result of the match is that 

h, = -(t,-s,)-Ti. 1.12 (6.20) 
L 

Here tn-s, is given by (6.15) and the match with the succeeding hump follows 
automatically on use of (6.17). 

7. The recurrence relations 
The system (6.18) is simpler in appearance if we write Eqy, = y ,  Eqyn+, = $7L 

Er(6, + Z,) = 6, EI(&,+~ +Io) = s", p, = p, EqZ, = I so that, upon solving (6.18 b) for $7, 6 
as suggested at the end of the preceding section, we obtain 

2 
L 

(y -Z) sin- (yo  +yl - s) + 6 ( yo  - y,), (7.1 a)  

2 2 
L L 

(y - I )  sin- (2y0 - s) + 6sin- ( yo  +y l  -s) ( yo  -yl). (7.1 b) 

Here s = l0g(l6/p) (7.2) 

and, from (6.16), 

(7.34 
2 
L 

p2 = (y - I)2+ 6' + 2(y - I )  GCOS - (yo  - y J ,  

2 
L 

= ($7 + Z)Z + 8- 2($7 + I )  s"C0S - (yo  -yl). (7.3 b) 

Given (7 .3~)  then (7.3b) is not independent of (7.1). 
It is now clear that, given y, 6 we may calculate p from (7.3a), s from (7.2) and then 

$7, s" from (7.1). Thus conditions at the (n + 1)th hump are obtained from those at the 
nth. To deal with the (n + 2)th hump we update y, S to $7, s" and repeat the cycle. 
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FIGURE 2(u-c). For caption see facing page. 
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FIGURE 2. Solutions of the recurrence relations (7.1k(7.3) with initial conditions in the neighbourhood 
of those for a periodic solution (y continuous line, 8 dashed line): (a) stable with I = 0, L = 1 ; (b)  
unstable with Z = 0, L = 1 ; (c)  stable with I = 0.2728, L = 10; ( d )  unstable with Z = 0.5382, L = 10; 
(e)  unstable with Z = 2.9722, L = 1 .  

(a) Periodic solutions 
Although it is easy to compute successive 7, $from (7.1)-(7.3) the system of recurrence 
relations is nonlinear, and as such may have unpredictable behaviour. We first examine 
the possibility of periodic solutions. It is not clear what the definition of periodicity 
should be but, initially at least, we shall consider periodic solutions for which the 
distance 4 2 s  between successive humps is always the same. There is of course no 
reason why this distance itself should not be a periodic rather than a constant function. 

With ,u a constant it is not difficult to analyse the periodic solutions of (7.1)-(7.3). 
At any stage the point (7,8) must lie on the ellipse (7.3b), and, when we update for the 
next stage it must also lie on (7.3 a). Thus the (up to four) points of intersection of these 
ellipses determine the periodic solutions with equally spaced humps. When I = 0 the 
points of intersection are (0, fp), (fp, 0) and the values of ,u for which the various 
combinations are possible form a sequence of eigenvalues. For example, it is easily 
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verified that (7.1)-(7.3) have the solution y = 0, 6 = p, 7 = 0, s”= p if ( s -2y l ) /L  = 
pn for any integer p .  Since p is asymptotically small, and hence s asymptotically large, 
for this theory to hold, strictlyp should be a large integer. In all there are four distinct 
possibilities, listed below, for periodic solutions with equal distances between humps. 
These are, where in each case p may be replaced by -p, 

(i) y = 0, S = p, 7 = 0, 6 = (- l )pp with ( s -2y l ) /L  =p77/2; 
(ii) y = p ,  S = O ,  ~ = ( - l ) p + l , u ,  s ” = O  with (s-2y0)/L=p7r/2; 
(iii) y = 0, 6 = p, 7 = (- l)”+’p, s” = 0 with ( s - yO-y l ) /L  = p77/2; 
(iv) y = p, S = 0, 7 = 0, s”= (- l)p,u with ( s -yo-y l ) /L  =pn/2. 

Case (i) with - p even and case (ii) with p odd are obviously immediately periodic (i.e. 
y = f ,  8 = 8) with period d 2 s .  If p is odd in case (i) and even in case (ii) then two 
applications are required before y, 6 return to their original values and the period is 
23/2s. Cases (iii) and (iv) must be applied successively as a pair and the resulting period 
is 25’2s. 

When I ,  which we recall is proportional to the cross-flow, is non-zero the original 
equations (5.1) and hence the recurrence relations (7.1) lose their upstream/ 
downstream symmetry. However, if purely periodic solutions are sought it is sufficient 
to restrict attention to positive I only because a change of sign of Nin (5.1) is equivalent 
to a change of sign of x. If I is sufficiently small the ellipses again intersect in four 
points, namely (0, S,), (0, S J ,  (7, g), (- 7,g) where 

- 

. (7.4) I 

(7-5) 
L - L r2 = ,u2-12tan2-((yo--y,), 6 = Zsec-(y,-y,) 

L L 

and S,, S, are the roots of 

2 
L 

= p2 - I 2  sin2 - ( yo  - yJ. 

Cases corresponding to (i)-(iv) of (7.4) are no longer all possible. One that does lead 
to a consistent eigenrelation for p is that corresponding to (i) with p even, i.e. y = 7 = 
0, S = s” = C Y , , ~ .  The eigenrelation for this is found from (7.1) to be 

1 2 
p2 sin2 - (2y,  - s) = I’ sin2 - ( y o  - y,) 

L L 

with the corresponding 
4 
1 

sin - (2yo - s)  

sin - (2y, - s) 

L 
1 
L 

S = I  

(7.7) 

(7.8) 

Other combinations which might have been thought to have sufficient symmetry, for 
example y = 7 = 0 with 6 = S,, s”= S, or y = 7 = -7 with 6 = 8= s” fail. The first 
clearly does not satisfy (7.3), while in the second the consequence of the lack of 
upstream/downstream symmetry is that although 7 may be followed by -7 at the 
successive hump, it is not possible for the resulting -7 to be followed by 7. 

If 111 < 1, equation (7.7) reduces to 

1 I 2 
,(s-2yl) M m7c+-exp(2y1 16 +m7c)sin-(y0-y,) L 

and (7.8) to 
6 M f 16exp(-2y1-mn) 

(7.9) 

(7.10) 
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for integral m, both of which, as I+O, reduce to case (i) of (7.4) with p even. When 
L % 1, equation (7.7) requires IIL1 4 1 and ,u M IL/log(l6/IL) with, from (7.8), 6 M ,a. 
To deduce these results, the asymptotic forms of yo, y1 in (AI) have been used. 
Although (7.7) has solutions for s, and consequently for y, when 111 % 1, in such a 
situation y = O(I)  and although the recurrence relations have perfectly acceptable 
solutions in this regime these cannot be related to the solution of the original 
differential eguations for which it was assumed that 4 2 s  is the distance between two 
maxima of A + B” and thus essentially positive. Hence, from (7.2), it follows that no 
solution with y > 16 is of direct interest; strictly the validity of the analysis is y -4 1. 

It is simple to examine the linear stability of the periodic solutions (iF(iv) in (7.4) 
with I =  0 and of the periodic solution given by (7.7), (7.8) for non-zero I. If in 
(7.lF(7.3) we write 

y = y0+e1, 6 = 6 , + E 2 ,  y = yo+6y, s = so+6s, (7.11) 

where el, e2, Sy, 6s are small perturbations then, by linearization from (7.2), (7.3a), (7.1) 
successively we obtain 

6s = - ~ y / y o ,  yo6y = ( 3 / 0 - ~ ) ~ , + ~ 0 ~ 2 + ( ( y , - I ) s 2 + 6 0 ~ 1 ) C O S ( Y , -  71, 
(7.12a, b) 

Elsin(Y,- Y,) = elsin(&+ Y,)+e2sin2Y, 

2 8,u 
LPO 

+--((yo - I )  cos (Y, + Y,) + 6, cos 2 Y,)), (7.13 a) 

E2sin(Y,- Y,) = elsin2Y,+e2sin(Y,+ Y,) 

+--((yo 2 SP - I )  cos 2 Y, + 6, cos (Y, + Y,)). (7.13 b) 
LPO 

- *  

Here jj = j j o  + E l ,  6 = 6, + E2, Y, = (2y, -so)/& Y, = (2y1 -so)/L and we must substitute 
for S,u/,uo from (7.12b). 

Equations (7.13) are linear recurrence relations with constant coefficients which may 
be solved exactly. If we write them as 

(7.14) u,+~ = au, + bv,, v ,+~ = cu, + dv, 

then the condition for stability is that (hl < 1 where h satisfies 

h2-(a+d)h+ad-be = 0. (7.15) 

It may be shown that each of cases (i)-(iv) of (7.4) leads to ad-bc = 1 so that if the 
roots are real then one has modulus greater than unity. If the roots are complex they 
both have modulus unity, and the perturbation, if initially of sufficiently small 
amplitude, will oscillate about zero. In cases (iii) and (iv) the roots of (7.15) are real for 
all yo, yl, so the situations are unstable. In case (i) the roots are complex if 

cos(Y,- Y,)(cos(Y,- Y,)+Lsin(Y,- Yl)) < 0, (7.16) 

while in case (ii) the condition is 

cos(Y,- Y,)(cos(Y,- Y,)-Lsin(Y,- Y,)) < 0. (7.17) 

It may be verified from tables 3 and 4 that (7.17) never holds but that (7.16) is satisfied 
for values of L larger than about 0.6. Thus only case (i) is stable. This is illustrated in 
figure 2(a) for a value of L = 1 and initial conditions y = 0.05, 6 = yo + 0.05 and so = 
2y1/L+& as an example of case (i) with p = 1. With p = 0 stability was maintained 
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with even larger initial perturbations. However, an example of case (ii), again with 
p = 1, is unstable owing to rounding error only; the instability is marked as can be 
seen in figure 2(b). 

The values of a, b, c, din (7.14) for the periodic situation described by (7.7), (7.8) for 
non-zero I m a y  be shown to be 

2 
L 

sin(&+ Y,)+-cos &cos Y, (7.18 a) 

(7.18 b) 

(7.1 8 c) 

Again ad-bc = 1 and the condition for the quadratic for h to have complex roots is 
now 

(7.19) 
1 1 
L L 

sin &sin Y,+-sin(&+ Y,)+,cos &cos Y, 

which reduces to (7.16), as it should, when so is given by case (i) of (7.4) with p even. 
It does not seem worthwhile to undertake an examination of the regions of the (I ,  L)- 
plane in which (7.19) is satisfied. When L % 1, however, (7.19) reduces to 

(2-s,)(s,- 1) < 0, (7.20) 

a condition which is easily checked. 
Illustrations of the stability of the periodic solutions with I =# 0 and L = 10 are 

shown in figure (2 c, d). The values of so are 4 log 2 and 2 log 2 respectively, of which the 
former satisfies (7.20). The corresponding values of Iare, from (7.7), 0.2728 and 0.5382 
and in figure 2 (c) the initial values were taken as y = 0.1, S = 6, + 0.1, but in figure 2 (d) 
they were y = 0.001, 8 = 8, +0.001, for the appropriate 8, from (7.8) in each case. The 
oscillations in figure 2(c) persist to large values of n but in figure 2 ( d ) ,  where (7.20) is 
violated, the solution does not oscillate about the appropriate values even though the 
initial perturbations are far smaller. A similar picture to that in figure 2(c) is obtained 
with so = log2, I = 0.5142, a situation in which (7.20) is again satisfied. 

Figure 2(e) illustrates an example with a smaller value of L, namely L = 1. Here 
so = log 2, I = 2.9722 but the inequality (7.19) is not satisfied; here the instability is due 
to rounding errors only. However, if so = 2log2 so that I=  2.0221, the inequality is 
satisfied and extremely stable oscillations (not illustrated) are obtained. 

Some comment may now be made on the effect of the parameters L and I on the 
stability of the periodic solutions of the recurrence relations. When I = 0, only one type 
is stable and this requires L > 0.6. Increasing L seems to increase the degree of 
stability. However, when I =k 0 this is not necessarily so as illustrated by the examples 
of figure 2. This is because of the complexity of condition (7.19). Increasing I does not 
necessarily decrease the degree of stability either, although, as stated after (7.19), there 
are fewer periodic solutions as only those corresponding to case (i) of (7.4) with p even 
are now possible. 

(b) Non-periodic solutions 
Solutions of the recurrence relations may easily be computed for any values of L, I and 
initial values y, 8. The appropriate p is calculated from (7.3a), s from (7.2) and 7, s" 
from (7.1). Equation (7.3 b) is then automatic. The next step is undertaken analogously 
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after replacing y, S by the newly calculated 7, 8. If, at any stage, the resulting p from 
(7.3a) has p > 16, then s < 0 and the recurrence relations cannot describe a solution 
of the original differential equations (5.1). Indeed all solutions computed (except those 
that were a perturbation of case (i) in (7.4) above or of a stable situation with I =+ 0) 
sooner or later reached this stage and it seemed pointless to pursue them further. 

The purpose of this section was to gain some feeling for what may be expected from 
the solutions of the differential equations (5.1). These equations have A”= B” as a 
solution, with a sech2 profile as in (6.1). In 96 we used this solution as a basis to 
construct symmetric solutions in which the difference between A” and B” is small. Such 
solutions consist of an infinite number of humps and troughs, strictly an asymptotically 
large distance apart, and matching from hump to hump leads to difference equations 
for the relative heights and slopes of b and B at the top of successive humps. These 
equations depend on two parameters, L and N .  We have analysed the periodic 
solutions of these difference equations, i.e. those solutions that are periodic in that they 
lead to equidistantly spaced humps, and have examined the stability of these solutions. 
We have shown that, in the case of zero cross-flow, only in one type of these periodic 
solutions will perturbations remain in its neighbourhood when L is sufficiently large, 
the other three types being unstable. With non-zero cross-flow there is one type of 
periodic solution, described by (7.7), (7.8) and its stability depends on both L and N .  
When L 9 1 but s / L  = 0(1), the difference equations may be replaced by differential 
equations the solutions of which suggest that in this limit all solutions of the difference 
equations are periodic but not with constant s. Successive values of s vary with n but 
after a sufficiently large n, which can be estimated from the solution of the differential 
equations, the sequence of values of s is repeated. 

In the following section we return to the differential equations (5.1), and seek 
solutions in which (b- j )  is not necessarily small. We use the results of this section to 
lead to solutions in which A” and B” are periodic functions, predictions of the period 
being possible from the results of the asymptotic analysis. 

8. Periodic solutions of equations (5.1) 
The asymptotic analysis of the preceding sections with 12- B”( < 1 shows that in this 

limit periodic solutions of (5.1) exist both when the cross-flow parameter N is zero (as 
in (7.4)) and when it is small but non-zero (as in (7.7), L7.8)). It is reasonable to suppose 
that periodic solutions of (5.1) exist even when Id-BI is of order unity, and we now 
show, by obtaining such solutions explicitly by numerical means, that this is indeed so. 
These solutions are obtained by using the analytic results for small IA”-B”I as an initial 
guess, for the unknown period for example. All solutions sought will have similar 
symmetry to those found in 996, 7 and there is no suggestion that the study is ex- 
haustive. For purposes of illustration we shall usually take L = 1 except where L + 1 
is of particular interest. 

We first consider the analogue of cases (i) and (ii) of (7.4). From (6.15), (6.17) and 
(6.19) we find that, for each, (520) reduces to h, = pn/2 .  Examination of (6.14) then 
shows that, if p is even, A” = B at x = t,, the base of the trough, but if p is odd then 
A - B = &p, cos (h,(x- t,)/L) which, together with (6.13), implies that either A” or B” 
vanishes at x = t,. In cases (iii) and (iv) we obtain h, = $pn & ( y o  -y , ) /L  respectively. 
In both cases (i) and (ii) A”+ B” is even about the trough and the hump; if p is even then 
A”- B” is odd about the trough but is even when p is odd. Case (i) has b- odd about 
the humps while in case (ii) it is even. Cases (iii) and (iv) do not have so much symmetry 
although A”+B” is even about both trough and hump. 

w w  
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S 

2.5554 
5.6970 
8.8386 

1 1.9801 

S 

4.1262 
7.2678 

10.4093 

S 

4.8128 
7.9544 

1 1.0960 

S 

3.2420 
6.3836 
9.5252 

a",,(a.e.) 

4.0571 
0.8714 
0.0906 
0.0072 

Zo(a. e .) 

1.0994 
0.1471 
0.0131 

a",(a.e.) 

1 SO56 
0.1777 
0.0150 

Z,(a.e.) 

1.6432 
0.2753 
0.0265 

b,(a.e.) 

26.4933 
28.2816 
7.0807 
1.0328 

y"Sa.e.) 
4.5366 
1.0712 
0.1360 

b,(a.e.) 

34.8742 
1 1.2452 
1.8500 

y",(a.e.) 
5.3274 
1.7575 
0.2523 

a",(num) 

3.4427 
0.8762 
0.0906 
0.0072 

Z,(num) 

1.1442 
0.1476 
0.0131 

a",(num) 

1.5338 
0.1778 
0.0150 

fO("Um) 
2.1070 
0.2766 
0.0265 

b , (nW 
10.1554 
27.2290 
6.9580 
1.0155 

Y,(num) 
4.4047 
1.0700 
0.1360 

&(num) 

32.7319 
1 1.0378 
1.8098 

y"AnUn-4 
5.6899 
1.7534 
0.2523 

TABLE 1 (a). Case (i), p odd: predicted (cols. 3, 4) and calculated (cols. 5, 6) values of a",, 6,. (b) Case 
(i)p even: predicted (cols. 3,4) and calculated (cols. 5,6) values of Z,, y",. (c)  Case (ii)p odd: predicted 
and calculated values of a",, b,. ( d )  Case (ii) p even: predicted and calculated values of Z,,, y",. 

We aim to compute the lowest modes corresponding to cases (i) and (ii) of (7.4). The 
eigenvalue is 2/2'/'s, the distance between the humps, and first approximations to s are 
given by (7.4) although strictly the formulae there hold only for s 9 1. It emerges that 
the lowest possible s in each situation leads to the simplest form of eigenfunction with 
the fewest oscillations in 2-B". The most awkward cases to compute are those of (i) 
and (ii) with p odd, since then either A" or B" vanishes at the base of the trough so that 
(5.1) have a regular singular point. To compute the periodic solutions we first scale the 
equations so that the distance between trough and succeeding hump is unity. The 
scaling that takes the interval (0, 2-ll2s) into (0,l)  and leaves (5.1) unaltered when 
N = 0, but replaces N by 2-l/,sN otherwise, is 

(x, 2, B", N )  -+ (2-1/2sX, 2sP22, ~ s - ~ J ,  2'/'s-'fl). (8.1) 

Integration is then initiated from the lowest point of the trough (2 = 0 say) with a 
target to be attained at the hump X = 1. The target vector is of length 2 and there are 
two free parameters at X = 0. Specifically these are, for the respective cases, 

(i) target: 2(1) = J ( l ) ,  2 ( 1 ) + 3 ( 1 )  = 0; (8.2a) 

(ii) target: A"'( 1) = B( 1) = 0. (8.2b) 

In both cases (i) and (ii) 2+ j  is even about the hump and in case (i) 2-3 is odd but 
i%eve_n in case (ii). The free parameters of X =-0 fQllow from the fact that in all cases 
A + B is even about the trough, but if p is-odd 6- is even, and conversely. If, when p 
is odd, we denote the free parameters A"(O), &(O) by io, 6, (on the assumption that 
it is B" that vanishes at the trough) then when L = 1, for small X 

- - 

(8.3a) 

(8.3b) 
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FIGURE 3(ac). For caption see page 123. 



122 S .  N .  Brown and F. T. Smith 

1 2 3 

-5 ' 

FIGURE 3(d-f). For caption see facing page. 
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FICURF~ 3. (uk(d).  The low_est periodic mode of table 1 (a-d) respectively (I+ ;continuous line, 2-3 
dashed line, abs_cissa a). N = 0, L = 1. (e) The second periodic mode of table 1 (b) on the same scale 
as figu_re 3 (b). N = 0, L = 1. (f) The change from a mode of the first type to one of the second type 
near N = 0.075. Again L = 1. (g) An additional periodic mode with N = 0, L = 1 .  

When p is even the free parameters are X,, y”, where 
w w % w 

2, = A”(0) (= B(0)) and y”, = A”’(0) (= (F(0)). 
With L = 1 we have from tables 3 and 4 that yo  = 0.0502, y1 = 0.4923. We now use 

cases (i) and (ii) of (7.4) to predict the values of s for the first few values ofp. This will 
enable the values of a“,, h2, X,, y”, to be predicted as initial guesses for the Newton 
iteration for the target in the respective cases. The predictions arcmade as follows. 
Once s is known, ,u follows from (7.2), and then A”(0) = ps2/2 and p(0) = p 4 / 2  from 
(6.13), (6.14) giving a“, and h2 in the cases whenp is odd. Whenp is even, it follows from 
(6.13), (6.14) that 2, = p 2 / 4  and y”, = ,us3/4. In table 1 (a-d) we give the first few 
values of s, a“,, h2, X,, y”, as predicted by the asymptotic formulae and by the 
Runge-Kutta Newtonian method. Table 1 (a,  b) shows case (i) with p odd and even 
respectively and table 1 (c, d )  shows case (ii) analogously. 

We see from the table that the asymptotic formulae increase dramatically in 
accuracy with p and s, and %re Gseful pzedictors even at the low values of p considered 
here. Figure 3 (a-d) shows A”+ B” and A - B” for the smallest value of p in each of tables 
1 (a)-1 (d). For convenience we have chosen to plot the figure so that 2 = 0, 2, 4 
correspond to humps of the asymptotic theory while 2 = 1, 3 correspond to troughs. 
In figure 3 (b, c) the period is 2, and in 3 (a, d )  it is 4. The higher modes increasingly 
resemble the asymptotic expansion. With a period scaled to be of order unity the 
heights of the humps increase as s2 (see (8.1)) and theyresemble more closely sech2 
profiles; in addition the number of oscillations of A - B between hump and trough 
increases. As an illustration of this in figure 3 (e) we plot the second mode of table 1 (b) 
03 the same scale as the first mode in figure 3(b). It contains ,an extra oscillation of 
A”-B” between hump and trough and the maximum value of A”+B” is approximately 
52.8. 

There are also periodic solutions of (5.1) when N is non-zero. Although it is possible 
to scale N out of the equations it is not possible to scale out the period as well. Thus 
we retain Nand as before scale solutions with unit distance between hump and trough. 
The asymptotic analysis of $06, 7 leads to one type of periodic solution when both 
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IA"-B"I and N are small. This corresponds to type (i) with p even of (7.4), and (7.9) 
shows that for non-zero N there are two such solutions. In table 2(a) we illustrate the 
periodic solutions obtained from perturbing the leading mode in table l(b) but with 
p, = -4.407. We see that as go decreases, fi reaches a maximum (of 0.076) and 
decreases again to zero at which valug the second mode of table 1 (b) is attained. The 
quantities ?o, j ,  denote the values of A and of A", at the hump. The change from a mode 
of the first type to that of the second type is illustrated in figure 3 0  in which 
fi = 0.075. This may be compared with figures 3(b) and 3(e). 

A bound to fi is also obtained if the leading mode of table 1 (b) with 9, = 4.4047 is 
perturbed. The results of so doing are shown in table 2 (b). As 8 increases 2, increases 
and Jl decreases until the periodic solution degenerates to A" = B" = 8fi2, the exact 
solution of (5.1) noted in $5.  This happens at N = 0.575. If To is increased beyond a 
value of 2.645, the hump and the trough are interchanged and fi decreases to zero 
again. The value of fi at which the maximum occurs can be calculated by linearly 
perturbing the constant solution of (5.1). The perturbations are proportional to ekiAflz 
where h2 = 16(1 +ad\/), and thus are of period 2, as are those solutions we have been 
seeking of the nonlinear equations, when IAIfi is a multiple of x. The lowest value of 
fi from this argument is 0.57495 and at this value the solutions of the nonlinear 
equations reduce to linear perturbations of the constant solutions. The constant 
solutions exist for all values of fi =k 0 (and L) and can be shown to be neutrally stable, 
but in general the periods of the oscillations are not equal to 2. The significance of the 
higher values of N at which the period of small oscillations is 2 has not been 
investigated. 

The cut-off values of fi evident in table 2 do not imply that periodic solutions do not 
exist at larger values of fi. The scaling properties of (5.1) result in the equivalence of 
a value No of fi and a period of 2, and a value Mo of fi and a period 2N0/M0. Thus 
as I? increases the period decreases and the amplitudes of the eigenfunctions increase 

The development of the higher modes in table 2(b) as fi increases has not been 
pursued, nor is it suggested that all periodic solutions with fi =l= 0 may be obtained by 
perturbing those of case (i) of (7.4) with p even as in (7.9). The reason for success in 
this situation is that (5.1) are invariant under a change of sign of x provided A" and B" 
are also interchanged so a symmetric cross-over with 2-2 odd about both hump and 
trough is acceptable. The other cases of (7.4) do not have this property, 

In each of tables 1 (akl  (d) successive modes have an exsra zero of A"-; between 
trough and hump. 'Higher' modes also exist in which A"+ B has a9diQonal statiogary 
points between trough and hump. Figure 3 (g )  for example, hcs A-- B odd and A + B" 
even about both trougb an$ hump with no additional zero of A"- B" than in figure 3 (b) 
but a more complex A + B .  In a sense it appears to be a 'second' mode, but clearly 
differs from that of figure 3(b). We have no analytic formula for the predictions of 
modes such as those of figure 3 (g )  but their development with fi could be examined, 
although we shall not do so here. 

The periodic solutions computed here with L = 1 may be traced as L varies. Some 
such solutions have been obtained in the case of N = 0. In most cases it was found that 
the solutions persisted as L increased but some disappeared as L decreased. For 
example, the simglest periodic solution, that with one oscillation of A"- B" between the 
maxima of A"+ B, came to an end at L2 = $. This phenomenon indicated the presence 
of multiple 'lowest mode' solutions for L2 > + and indeed such were found. However 
we shall not pursue this question of non-uniqueness. 

as (MolNo)2. 
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8 
(4 0 

0.02 
0.04 
0.06 
0.076 
0.06 
0.04 
0.02 
0.00 
8 

(b) 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.575 
0.6 

2 0  

1.1442 
1.0775 
0.9984 
0.8936 
0.6372 
0.4602 
0.3486 
0.2593 
0.1476 

20 
1.1442 
1.3948 
1.5856 
1.7541 
I .9244 
2.1419 
2.6450 

8 8 ’  

91 
-4.4047 
-4.3306 
-4.21 10 
-4.0029 
- 3.2755 
-2.6055 
-2.1142 
- 1.6544 
- 1.0700 

91 
4.4047 
4.4404 
4.1692 
3.6871 
2.9932 
1.9719 
0 
0 

2 0  

8.5013 
8.9716 
9.5665 

10.4303 
13.1156 
15.8311 
18.2666 
21.1488 
26.41 14 

40 

8.5013 
6.9109 
5.8341 
4.971 1 
4.2171 
3.4909 
2.6450 

8N2 

91 

2.7584 
2.4717 
2.0889 
1 S229 
0.0000 

-0.9053 
-1.2135 
-1.1741 
-0.6498 - 

91 

-2.7584 
- 3.49007 
-3.6165 
- 3.3828 
-2.8470 
- 1.9248 

0 
0 

TABLE 2(a). The development of the first of the lowest modes with 8. At the maximum vgue of @ 
it becomes a higker mode. (b) The development of the second of the lowest modes with N. At the 
critical value of N ,  the functions become constant. 

9. Representative solutions at moderate values of L and N 
In this section we present a few numerical solutions of (5.1) with fairly arbitrary 

initial conditions. In figure 4(a) are plotted A“+B” and A”-B” calculated with L = 1, 
N = O a n d  

A NAG routine with self-adjusting step length was used so that the evidently very small 
values of A” or B” could be accommodated, although the same results could be achieved 
with a constant step length of 10-3/16 and a conventional fourth-order Runge-Kutta 
scheme. A notable feature of figure 4(a) is the boundedness of both amplitude 
functions A” and B”. Indeed, in this example, the initial values are barely exceeded. 
Similar behaviour resulted with other choices of initial conditions. 

Solutions with non-zero cross-flow were then sought. For this illustration we took 
N = 1 and the initial conditions to be as in (9.1). Figure 4(b) shows A”+B” and A”-B” 
derived from the NAG routine with a tolerance of lo-’’. This solution is reproducible 
(either by changing the tolerance in the NAG routine or by using the fixed-step-length 
Runge-Kutta routine) as far as x approximately equal to 14.2, after which graphical 
inconsistencies may be detected. There is no doubt, however, that there are dramatic 
increases in amplitude in the neighbourhood of x = 2,4,  14 all of which follow a near 
zero of A” or B”. We have no quantitative theoretical explanation of this phenomenon, 
which occurs also for a change of sign of Nand variations on the initial conditions (9.1), 
and only note that there seems to be a high degree of instability. There are, however, 
solutions with L = N = 1, the behaviour of which we are able to understand. One of 
these is illustrated in figure 4(c) for which 

A”(0) = 1.0, B”(0) = 2.0, Z’(0) = 0.5, F(0) = -0.5. (9.1) 

A”(0) = 8.5, Z(0) = 6.5, A”’(0) = 0.5, B(0) = 0.5. (9.2) 

Here A”+ B” and A”- B” are plotted and we see that both A” and B“ oscillate about the 
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FIGURE 4. (a) Nzn-periodic solutions of equations (5.1) with initial conditions (9.1). (A”+B” 
continuous line, A - B das_hed line, abscissa x.) (a) N = 0, L = 1 ; (b) N = 1, L = 1. (c) Oscillations 
about the exact solution A = B = 8 with N = L = 1. 
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value 8 which, as noted in 95 and again in 98 is an exact solution of (5.1). In $8 
we stated that perturbations to this solution are proportional to e+ihz where h2 = 
16(1+$2/3), and a weakly nonlinear theory applied to one such mode leads to a 
Stuart-Landau equation for the amplitude of the form 

dA 
- = iAIAI2 
dX (9.3) 

for appropriately scaled x. The solutions of (9.3) have IAl constant and are purely 
oscillatory. This behaviour is consistent with that in figure 4(c) although the solution 
there is likely to consist of a combination of modes. The irrational values of h mean 
that there will be no resonances between these modes. 

At more extreme values of L it is possible to compute reproducible solutions with 
N = 1 and the initial conditions (9.1). Figure 5(a) shows A”+B” and 2-2 with N = 1 
and L = 0.005 while figure 5(b) has L = 20. In both cases the solutions are remarkably 
periodic. Figure 5(c, d)  shows the detailed structure of the rapid oscillations of A”-B” 
in figure 5(a) and A”+B” in figure 5(b). Also evident, as expected, is the lack of 
upstreamldownstream symmetry unless A” and B” are also interchanged. Similar 
periodicity or quasi-periodicity is also evident at extreme values of L when the cross- 
flow is zero. 

10. Summary and conclusions 
In this study we have obtained equations for the amplitudes of two Rayleigh waves 

in vortex-wave interaction with a cross-flow. Although equally inclined to the 
mainstream the waves may be of unequal amplitude, and indeed must be in the case 
of non-zero cross-flow. The investigation centres on the question of the existence of 
self-perpetuating solutions at large distances downstream. Solutions that decay with x 
or become singular at finite values of x are not of interest here, and the parameter 
values, in particular M < 0 in (4.3) and Ah > 0 preceding (5.1), are chosen to exclude 
them. Since x 1, the conditions at x = -GO are not expected to be relevant, and 
equations (4.7) have been replaced by the autonomous system (5.1); it is anticipated 
that this will hold in the neighbourhood of a large fixed value X,, of x. 

Equations (5.1) contain the two parameters L and N .  Here N is a measure of the 
amount of cross-flow and was zero in SBB where only solutions with equal amplitudes 
A” = B” were considered; this particular equal-amplitude solution does not exist when 
N =l 0. The parameter L measures the phase difference of the x-derivative and 
nonlinear terms in the original equations (3.16). If L % 1, then A and C in (3.16) are 
both real (and of the same sign), but if L 4 1, the ratio CIA is purely imaginary. 

Attention was focused on the periodic solutions of (5.1) on the grounds that they 
would correspond to self-sustaining solutions of the original equations. It was not clear 
ab initio that such solutions would exist, but several families were constructed using an 
asymptotic technique. These solutions had approximately equal values of amplitudes 
A” and B“ and necessarily small (or zero) values of N .  They were characterized by a 
humptrough sequence pattern, a hump representing an interval of intense wave 
activity and a trough one of quiescence with consequent vortex adjustments. 
Conditions at successive humps are related by difference equations studied in 9 6 .  
Periodic solutions of these are identified and used as aids to constructing periodic 
solutions for finite values of (A“-B”I by numerical means. For illustration most of the 
examples computed have L = 1, and it seems likely (see below) that periodic solutions 
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FIGURE 5(u-c). For caption see facing page. 
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FIGURE 5. (a)  Solutio_ns o,f equations (5.1) with initial conditions (9.1) andla) N = 1, L = 0.005 (d+ < 
slowly oscillating, A - B rapidly oscillating); (b) N = 1, L = 20 ( A  + B rapidly oscillating, A - B 
slowly oscillating). Abscissa x. (c) The detailed structure of (a);  ( d )  the detailed structure of (b). 

exist for all values of L although they perhaps become more sparse as L decreases. 
There are periodic solutions for non-zero cross-flow N,  but not necessarily of pre- 
determined period as in the case N = 0. 

When L % 1, so that C and A in (3.16) are completely in phase, all solutions of the 
difference equations of 96 appear to be periodic. Indeed, so do all solutions of (5.1) 
when the cross-flow is zero regardless of the starting conditions. Perhaps of most 
interest are flows with non-zero N of which a little examination has been made here. 
At extreme values of L (see 99) it is possible to compute solutions with N =I= 0 that have 
a fascinating periodic, or pseudo-periodic, structure ; such asymptotic structures 
remain to be analysed. However at moderate values of L, L = 1 for example, we have 
not been able to present solutions that are reproducible over more than a moderate 
distance in x. Any change in step length or accuracy tolerance has a devastating effect 
on the solution, which appears to become unbounded. This is in contrast with the 
situation when L = 1 and N = 0 where an arbitrary solution seems to remain bounded. 

As noted above, the study in this paper is restricted to those values of the coefficients 
of the basic equations for which the solution neither terminates in a singularity nor 
decays exponentially. The autonomous system of equations considered is derived as an 
appropriate form of the integro-differential equations sufficiently far downstream that 
the effect of the initial conditions and of the non-parallelism of the basic flow at the 
point of input of the two waves is not of fundamental importance. Solutions for the 
amplitudes of the input waves that persisted over a large range of the streamwise 
variable were specifically sought. Although, in such a situation, the amplitudes are 
periodic or pseudo-periodic, their effect on the vortex solution, which satisfies the 
diffusion equation in the buffer region adjacent to the critical layer, is to promote its 
continual development over successive wave periods. This was also a feature of the 
single-wave input study of SBB. Such persistent interaction and consequent adjustment 
of the basic state is felt to be a possible pre-cursor of incipient transition and merits 
attention. 

Finally, the present work is expected to lay the basis for further studies of increased 
non-symmetry, whether in the input amplitudes, in enlarged cross-flow, or in enlarged 
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swirl (Part 2). It is desirable to deal with stronger cross-flows for theoretical and 
practical reasons and these may invoke full cross-flow waves, cf. the strong cross-flows 
considered by Davis & Smith (1994). 

The authors are grateful to Dr S. N. Timoshin for useful discussion and discerning 
comments. 

Appendix. The solutions of equation (6.5) 

to the equation for simple harmonic motion and 

in this limit. 
To discuss q50(x), q51(x) when L 4 1 it is convenient to define y = (x-sn)/d2. The 

equation must be solved in two regions, namely y = O(1) and y = O(L1I2). When y = 
O(L1I2) we write y = L1/2z, and find that, in the limit L+O, the solution co of the 
homogeneous equation derived from (6.5) is 

When L 9 1 a simple scaling reduces the homogeneous equation derived from (6.5) 

q x 1, yo x nL/4+ 1, r x 2-'/'L, y1 = O ( P )  (A 1) 

z;, = z1/2(Eo J-1/4(z2) + Jo JlI4(Z2)), 

c x (tanhy)-1/2(r+ e(Wl)logcoshv + r - e-(2i/L)logcoshy 1 

(A 2) 

where E,,, do are constants. When y = O(1) a WKB solution is required and 

(A 3) 

where r+, r- are also constants. 
To obtain q and yo  we take 

Jo = 0, to = 2-1/4(-9 (A 4) 

in (A2), and use the asymptotic form of the Bessel function as z+oo to match with 
(A3) as y+O. The result is that 

and hence that, for y % 1, 

This, together with (A4), leads to 

(2~)1/4 (-i)!, yo x log2--L, 3n 
16 

qx- 
+/2 

when L 4 1. On the other hand, to obtain r and y ,  we take 

Eo = 0, do .. = 2 314 (3. 1 I L1/2 

in (A 2) and find, instead of (A 5) ,  that 
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L q(num) q(a.e.1 yo(a.e.) yo(num) 
100 0.9999 1.000 - 77.5398 - 77.5403 
10 0.9925 - -6.8540 -6.8600 
5 0.9726 - - -2.9491 
4 0.9596 - - -2.1742 

- 1.4079 3 0.9360 - 
2 0.8888 - - -0.6598 
1 0.7841 0.8222 0.1040 +0.0501 
0.8 0.7485 0.7775 0.2219 0.1852 
0.6 0.7031 0.7236 0.3397 0.3175 
0.4 0.6414 0.6538 0.4575 0.4466 
0.2 0.5445 0.5498 0.5753 0.5722 
0. I 0.4601 0.4623 0.6342 0.6333 
0.01 0.2599 0.2600 0.6872 0.6872 

- 

TABLE 3. Numerical values of q and yo (columns 2 and 5) and the asymptotic values 
predicted by (A I), (A 7) (columns 3 and 4). 

L r(num) r(a.e.) y,(a.e.) yl(num) 

100 70.7303 70.7107 - 0.0003 
10 7.2586 7.071 1 - 0.0309 
5 3.8687 0.1049 
4 3.2138 - - 0.1475 
3 2.5659 0.2162 
2 1.9069 0.3273 
1 1.1657 1.2163 0.4967 0.4924 
0.8 0.9935 1.0288 0.5361 0.5310 
0.6 0.8071 0.8292 0.5753 0.5709 
0.4 0.6005 0.6118 0.6146 0.61 16 
0.2 0.3603 0.3838 0.6539 0.6527 
0.1 0.2152 0.2163 0.6735 0.673 1 
0.01 0.0385 0.0385 0.691 1 0.691 1 

TABLE 4. Numerical values of r and y1 (columns 2 and 5) and the asymptotic values 
produced by (A 11, (A 10) (columns 3 and 4). 

- - 

- - 

- - 

Thus, for y 9 1, 

this being the analogue of (A6). Hence, finally, we obtain 

r x ( 2 ~ ) ~ / ~ ( 2 / ~ ) ~ / ~ ( + ) ! ,  y1 x log2--L x 
16 

for L 4 1 .  
In table 3 we present q and yo found numerically for selected values of L together 

with the results from the asymptotic formulae (A7). Each yo is arbitrary to within a 
multiple of Lx, so for definiteness each has been chosen so that q > 0, and that, when 
L = 1 ,  lyol is as small as possible, and that yo is a continuous function of L. Table 4 
contains corresponding information for r and y,, the asymptotic formulae being (A 10). 
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